[Bilberry] exhibited protective effects by increasing the antioxidant defense mechanisms, suppressing lipid peroxidation and proinflammatory cytokines, and inhibiting retinal cells apoptosis.
Read the Abstract
Fursova AZh, Gesarevich OG, Gonchar AM, Trofimova NA, Kolosova NG. Adv Gerontol. 2005;16:76-9.
Read the AbstractMajeed M, Majeed S, Nagabhushanam K. J Med Food. 2021 May;24(5):551-557.
Read the AbstractOsada H, Okamoto T, Kawashima H, Toda E, Miyake S, Nagai N, Kobayashi S, Tsubota K, Ozawa Y. PLoS One. 2017 Jun 1;12(6):e0178627.
Read the AbstractOgawa K, Kuse Y, Tsuruma K, Kobayashi S, Shimazawa M, Hara H. BMC Complement Altern Med. 2014 Apr 2;14:120.
Read the AbstractWang, Y., Guo, X., Sun, H., Qi, W., & Li, A. Food and Agricultural Immunology, 30(1), 829–840.
Read the AbstractMinami S, Nagai N, Suzuki M, Uchida A, Shinoda H, Tsubota K, Ozawa Y. Antioxidants (Basel). 2020 Jun 3;9(6):487.
Read the AbstractThe elevation of zinc concentration may restore choriocapillaris fenestration resulting in improved nutrient flow and clearance of waste material in the retina.
Read the Abstract
Blasiak J, Pawlowska E, Chojnacki J, Szczepanska J, Chojnacki C, Kaarniranta K. Int J Mol Sci. 2020 Jul 15;21(14):4994.
Read the AbstractErie JC, Good JA, Butz JA, Pulido JS. Am J Ophthalmol. 2009 Feb;147(2):276-282.e1.
Read the AbstractUgarte M, Osborne NN, Brown LA, Bishop PN. Surv Ophthalmol. 2013 Nov-Dec;58(6):585-609.
Read the AbstractWills NK, Ramanujam VM, Kalariya N, Lewis JR, van Kuijk FJ. Exp Eye Res. 2008 Aug;87(2):80-8.
Read the AbstractImbalance in copper homeostasis exert toxicity, oxidative stress, reduced antioxidant mechanism and affect various metabolic functions in circulation and as well as in ocular tissues. Evidences show copper depletion might contribute to cellular apoptosis or necrosis as well as mitochondrial dysfunction by impairing the mitochondrial biogenesis.
Read the Abstract
Erie JC, Good JA, Butz JA, Pulido JS. Am J Ophthalmol. 2009 Feb;147(2):276-282.e1.
Read the AbstractWills NK, Ramanujam VM, Kalariya N, Lewis JR, van Kuijk FJ. Exp Eye Res. 2008 Aug;87(2):80-8.
Read the AbstractNewsome DA, Swartz M, Leone NC, Hewitt AT, Wolford F, Miller ED. Invest Ophthalmol Vis Sci. 1986 Dec;27(12):1675-80.
Read the AbstractAge-Related Eye Disease Study Research Group. Flora SJ. Arch Ophthalmol. 2001 Oct;119(10):1417-36.
Read the Abstract[For those taking lutein,] mean eye macular pigment optical density increased approximately 0.09 log units from baseline, Snellen equivalent visual acuity improved 5.4 letters for Group 1 L and 3.5 letters for Group 2 L/A, and contrast sensitivity improved
Read the Abstract
Feng L, Nie K, Jiang H, Fan W. PLoS One. 2019 Dec 30;14(12):e0227048.
Read the AbstractMurray IJ, Makridaki M, van der Veen RL, Carden D, Parry NR, Berendschot TT. Invest Ophthalmol Vis Sci. 2013 Mar 11;54(3):1781-8.
Read the AbstractFujimura S, Ueda K, Nomura Y, Yanagi Y. Clin Ophthalmol. 2016 Oct 31;10:2149-2155.
Read the AbstractHammond BR, Fletcher LM, Roos F, Wittwer J, Schalch W. Invest Ophthalmol Vis Sci. 2014 Dec 2;55(12):8583-9.
Read the AbstractMa L, Yan SF, Huang YM, Lu XR, Qian F, Pang HL, Xu XR, Zou ZY, Dong PC, Xiao X, Wang X, Sun TT, Dou HL, Lin XM. Ophthalmology. 2012 Nov;119(11):2290-7.
Read the AbstractHuang YM, Dou HL, Huang FF, Xu XR, Zou ZY, Lu XR, Lin XM. Br J Ophthalmol. 2015 Mar;99(3):371-5.
Read the AbstractCompared with those whose plasma concentrations of zeaxanthin were in the highest third of the distribution, people whose plasma concentration was in the lowest third had an odds ratio for risk of age-related macular degeneration of 2.0 (95% confidence interval [CI] 1.0-4.1), after adjustment for age and other risk factors.
Read the Abstract
Seddon JM, Ajani UA, Sperduto RD, Hiller R, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J, Miller DT, et al. Eye Disease Case-Control Study Group. JAMA. 1994 Nov 9;272(18):1413-20.
Read the AbstractHammond BR, Fletcher LM, Roos F, Wittwer J, Schalch W. Invest Ophthalmol Vis Sci. 2014 Dec 2;55(12):8583-9.
Read the AbstractSundelin SP, Nilsson SE. Free Radic Biol Med. 2001 Jul 15;31(2):217-25.
Read the AbstractWu J, Cho E, Willett WC, Sastry SM, Schaumberg DA. JAMA Ophthalmol. 2015 Dec;133(12):1415-24.
Read the AbstractScripsema NK, Hu DN, Rosen RB. J Ophthalmol. 2015;2015:865179.
Read the AbstractReaction products of acid phosphatase activity were located in secondary lysosomes in the retinal pigment epithelium and on the disc membranes of the photoreceptor outer segment. These alterations became more prominent with the duration of vitamin E deficiency.
Read the Abstract
Snodderly DM. Am J Clin Nutr. 1995 Dec;62(6 Suppl):1448S-1461S.
Read the AbstractEdwards G, Olson CG, Euritt CP, Koulen P. Front Neurosci. 2022 May 4;16:890021.
Read the AbstractChew EY, Clemons T. Arch Ophthalmol. 2005 Mar;123(3):395-6.
Read the AbstractHayes KC. Invest Ophthalmol. 1974 Jul;13(7):499-510.
Read the AbstractChew EY, Clemons T, SanGiovanni JP, Danis R, Domalpally A, McBee W, Sperduto R, Ferris FL. Ophthalmology. 2012 Nov;119(11):2282-9.
Read the AbstractVitamin C (ascorbic acid) is an effective antioxidant that protects proteins, lipids, carbohydrates, and nucleic acids from free radicals and reactive oxygen species (ROS) damage.
Read the Abstract
Zampatti S, Ricci F, Cusumano A, Marsella LT, Novelli G, Giardina E. Nutr Res. 2014 Feb;34(2):95-105.
Read the AbstractSanGiovanni JP, Chew EY, Clemons TE, Ferris FL 3rd, Gensler G, Lindblad AS, Milton RC, Seddon JM, Sperduto RD. Arch Ophthalmol. 2007 Sep;125(9):1225-32.
Read the AbstractKhan R, Ali S, Mumtaz S, Andleeb S, Ulhaq M, Tahir HM, Khan MKA, Khan MA, Shakir HA. Environ Sci Pollut Res Int. 2019 Jun;26(16):16727-16741.
Read the AbstractPameijer EM, Heus P, Damen JAA, Spijker R, Hooft L, Ringens PJ, Imhof SM, van Leeuwen R. Acta Ophthalmol. 2022 Dec;100(8):e1541-e1552.
Read the AbstractChew EY, Clemons T, SanGiovanni JP, Danis R, Domalpally A, McBee W, Sperduto R, Ferris FL. Ophthalmology. 2012 Nov;119(11):2282-9.
Read the Abstract